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 The exploration of graph width parameters, spanning both graph 

theory and algebraic frameworks, has captured substantial 

attention. Among these, branch width has distinctly emerged as a 

key metric. The Quasi-Ultrafilter serves as an axiomatic tool for 

scrutinizing incomplete social judgments. In this concise study, 

we outline a coherent definition of Quasi Ultrafilters within the 

connectivity system and clarify its dual association with branch 

width. 

 

Introduction: A quasi-ultrafilter on a connectivity system is a set of subsets of a given set 𝑋 defined 

by a symmetric submodular function  𝑓, that satisfies specific axioms. It has a dual relationship with 

branch-decomposition, where branch-decomposition is a graph width parameter representing a 

hierarchical clustering of a graph's edges. This duality allows quasi-ultrafilters to provide an axiomatic 

framework for studying branch-width, with the key distinction being the inclusion of the symmetric 

submodular function condition.  

Relationship to branch-decomposition 

 Dual relationship:  
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The core of the relationship is a duality, meaning that what is defined for the quasi-ultrafilter on the 

connectivity system corresponds to properties of branch-decomposition.  

 Branch-width:  

Branch-width is a graph width parameter measuring how close a graph is to a tree, and it is determined 

by finding the minimum width of any possible branch-decomposition.  

 Axiomatic framework:  

The quasi-ultrafilter on the connectivity system serves as an axiomatic tool to analyze and understand  

concepts like branch-width. The axioms of the quasi-ultrafilter provide a structural property that can be 

related to the decomposition of a graph's edges.  

1. Definitions and Notations in this Paper  

    This section provides mathematical definitions of each concept. 

1.1. Filters on Boolean Algebras  

In the Boolean algebra (X,∪,∩), a filter is defined as outlined below. Filters and Ultrafilters stand 

as cornerstone concepts in mathematics, with a wealth of research and related studies on them 

available in references [30-40]. Within this algebraic structure, the complement of a filter is termed 

an ideal. 

Definition 1: In a Boolean algebra (X,∪,∩), a set family F ⊆ 2 X satisfying the following 

conditions is called a filter on the carrier set X. 

(FB1) A, B ∈ F ⇒ A ∩ B ∈ F,  

(FB2) A ∈ F, A ⊆ B ⊆ X ⇒ B ∈ F,  

(FB3) ∅ is not belong to F. 

In a Boolean algebras (X,∪,∩), A maximal filter is called an ultrafilter and satisfies the following 

axiom (FB4): (FB4) ∀A ⊆ X, either A ∈ F or X / A ∈ F. 

1.2. Quasi-Ultrafilter on Boolean Algebras  

In reference [1], the notion of a Quasi-Ultrafilter is introduced. This literature also provides an 

axiomatic examination of incomplete social judgments. The quasi-ultrafilter plays a pivotal role in 

the proofs of reference [1].  

This concept is illustrated using a Boolean algebra (X, ∪, ∩). While the properties of a Quasi-

Ultrafilter closely resemble those of an ultrafilter, they diverge in property (QB1). The significance 

of the Quasi-Ultrafilter is evident, given its mention in various related studies (e.g., [1-8,25]).  

 

Definition 2: In a Boolean algebra (X,∪,∩), a set family Q ⊆ 2 X satisfying the following 

conditions is called a Quasi-filter on the carrier set X. 

(QB1) A⊆ X,B⊆ X , A∉ Q , B ∉ Q ⇒ A ∪ B ∉ Q,  
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(QB2) A ∈ Q, A ⊆ B ⊆ X ⇒ B ∈ Q,  

(QB3) ∅ is not belong to Q.  

(QB4) ∀A ⊆ X, either A ∈ Q or X / A ∈ Q 

 

1.3. Symmetric Submodular Function and Connectivity System  

The definition of a symmetric submodular function is given below. The symmetric submodular 

function is widely utilized and discussed in various scholarly publications (e.g., [9-12]). 

Definition 3: Let X be a finite set. A function f: X → ℕ is called symmetric submodular if it 

satisfies the following conditions:  

· ∀A⊆X, f(A) = f(X\A).  

· ∀A, B⊆X, f(A) + f(B) ≥ f(A∩B) + f(A∪B). 

In this short paper, a pair (X, f) of a finite set X and a symmetric submodular function f is called a 

connectivity system. It is known that a symmetric submodular function f satisfies the following 

properties: 

Lemma 1[12]: A symmetric submodular function f satisfies:  

1. ∀A⊆X, f(A) ≥ f(∅) = f(X).  

2. ∀A, B⊆X, f(A) + f(B) ≥ f(A\B) + f(B\A). 

 

In this short paper, we use the notation f for a symmetric submodular function, a finite set X, and a 

natural number k. A set A is k-efficient if f(A)≤k. Unless otherwise specified, in this paper, the 

underlying set X is assumed to be a non-empty finite set. 

1.4. Branch-Decomposition of a Connectivity System  

In graph theory, branch width stands as a pivotal graph width parameter. It entails a branch 

decomposition wherein the decomposition's leaves align with the graph's edges. Every edge is 

paired with a value derived from a symmetric submodular function, gauging the connectivity 

between edges. Branch width notably extends the breadth of symmetric submodular functions 

applied to graphs. 

The definition of branch-decomposition is shown below. Due to its significance, branch-

decomposition has been the subject of various research studies [13-29]. 

 

Definition 4: Let (X, f) be a connectivity system. The pair (T, μ) is a branch decomposition tree of 

(X, f) if T is a ternary tree such that |L(T)| = |X| and μ is a bijection from L(T) to X, where L(T)  

 

denotes the leaves in T. For each e ∈ E(T), we define bw(T, μ, e) as f(∪v∈L(T1) μ(v)), where T1 is 

a tree obtained by removing e from T (taking into account the symmetry property of f). The width 
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of (T, μ) is defined as the maximum value among bw(T, μ, e) for all e ∈ E(T). The branch-width of 

X, denoted by bw(X), is defined as the minimum width among all possible branch decomposition 

trees of X 

2. Quasi-Ultrafilter on Connectivity System  

We introduce the Quasi-Ultrafilter on the Connectivity System (X,f) as an extension of the Quasi-

Ultrafilter on Boolean Algebras. Subsequently, we elucidate its dual relationship with branch-

width. The primary distinction in this definition, compared to the one on Boolean Algebras, is the 

inclusion of the Symmetric Submodular Function condition. 

Definition 5: Let X be a finite set and f be a symmetric submodular function. In a connectivity 

system, the set family Q ⊆2 X is called a Quasi ultrafilter of order k+1 if the following axioms hold 

true: 

(Q0) ∀A ∈ Q, f(A) ≤ k  

(Q1) A ⊆ X, B⊆ X , A∉ Q , B ∉ Q ⇒ A ∪ B ∉ Q  

(Q2) A ∈Q, A ⊆ B ⊆ X, f(B) ≤ k ⇒ B ∈ Q  

(Q3) ∅ is not belong to Q.  

(Q4) ∀A ⊆ X, f(A) ≤ k ⇒ either A ∈ Q or X / A ∈ Q. 

And Quasi-Ultrafilter is non-principal if the Quasi-Ultrafilter satisfies following axiom: (Q5) A ∉Q 

for all A ⊆ X with |A| = 1. 

The main theorem of this paper is presented as follows. This proof utilizes techniques from the 

paper [19]. At first glance, the concepts that seem unrelated possess an extremely intriguing duality 

when specific conditions are applied. Moving forward, I plan to continue exploring such 

interconnected concepts. 

Theorem 2: Let X be a finite set and f be a symmetric submodular function. Branch-width of the 

connectivity system (X, f) is at most k if and only if no (non-principal) Quasi Ultrafilter of order 

k+1 exists. 

Proof. This proof utilizes techniques from the paper [19].  

So the proof will be presented concisely, focusing primarily on the key points or highlights. 

Let X be a finite set and f be a symmetric submodular function. Assume that the branch-width of 

the connectivity system (X, f) is at most k. Note that A set A ⊆ X is called k-branched if the 

connectivity system obtained from f by identifying X \ A has branch-width at most k. 

 

 

Consider the set I defined by I = {A | X\ A ∈ Q}. If the branch-width of the connectivity system (X,  

f) is bounded above by k, then the set X is classified as k-branched. It's evident that any k-branched 

set, provided it consists of at least two elements, can be expressed as the union of two distinct, 

proper subsets that are both k-branched. Given axiom (Q3) and axiom (Q4) in definition of non-
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principal Quasi Ultrafilter, we have X ∈ Q, implying X ∉ I. Although I is expected to encompass 

all kbranched sets, the absence of X from I creates a contradiction. Thus, there cannot exist a non-

principal Quasi Ultrafilter. And if the branch-width of the connectivity system (X, f) is greater than 

k, then there exists a non-principal Quasi Ultrafilter. This proof is completed. 
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